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Abstract. Mesoscopic conductance Ructualions in a 20 electron channel due IO correlations 
between classical boundary scattering pmcesses are discussed. The contribution Lo conductance 
provided by the correlations is calculaled and analysed: it is a consequence of the inherent 
roughness of lhe boundary. As a result stochastic oscillarions for a weak magnetic field are 
exhibited. In the absence of bulk scattering the stochastic behaviour has a fractal structure, 
the f r a u  dimension being 1.5. It is Shown lhat at higher temperalures classical mesoscopic 
Ructuations, discussed here, dominate over the univenal conductance Ructuations. Unlike 
lhe universal Conductance Ructualions. these classical ones are non-universal and reveal a 
dependence upon the geometry of a sample. Such non-universal behaviour of the classical 
conductance fluctuations is consistent with recent experimental data observed for ballistic 
conducton. 

1. Introduction 

Mesoscopic fluctuations in conductance in systems of small size is a consequence of an 
inhomogeneous distribution of scatterers. Such fluctuations are due to quantum interference 
(the so-called universal conductance fluctuations, UCF) [1,2]. However, it has been 
shown [3,4] that mesoscopic fluctuations can exist within a purely classical picture, i.e. for a 
classical charged particle moving in a field of random scatterers. Such classical fluctuations 
contribute to the conductance, which is related to the specific spatial distribution of the 
scatterers (as in the quantum case). It is obvious that one can describe the sensitivity of 
the conductance to a specific realization of the scatterers only by taking into account the 
correlation between successive scattering eventsf. 

The electron distribution function at the point where a given scatterer is situated is 
a consequence of the previous acts of scattering, so the probability for an electron to be 
scattered by this scatterer depends on the spatial arrangement of neighbouring scatterers (note 
that the effect of this factor on the average conductance was considered by Landauer 15.61). 

The presence of an extemal magnetic field bends the electron trajectories from straight 
lines into helices, and changes the correlation in question. This change is of the same type 
as those due to the variation of the spatial arrangement of the scatterers inside the system. 

5 Permanent address: Institute for Radiophysics and Electronics, Ukrainian Academy of Sciences, Khakov. 
310085. Ukraine. 
? Note that in the usual 7 approximation leading lo the h i d e  formula such a correlation is averaged out. 
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As a result, a classically weak magnetic field leads to variations in the distribution of carriers 
in phase space and thus to stochastic-like conductance fluctuations. 

The type, amplitude and period of classical mesoscopic fluctuations depend in turn on 
the parameters of the scattering potential [3,4]. It appears that, at least for near-ballistic 
small-size systems with large scatterers (e.g. charged impurities in semiconductors) classical 
effects can  dominate over UCF. On the other hand, one expects classical effects to survive 
at higher temperatures where quantum effects would be averaged out and unobservable. 

The classical mesoscopic fluctuations have been predicted for systems with bulk 
scatterem [3,4], but in low-dimensional systems the impurity scattering is usually 
suppressed [7-91. In systems with a high mobility of the electron gas, ballistic behaviour of 
the electrons takes place and the transport properties are very sensitive to the electron 
scattering at boundary inhomogeneities. Thus, the problem of classical mesbscopic 
fluctuations induced by boundary scattering is of special importance. 

In this paper we consider such ‘surface’ mesoscopic effects in a narrow electron channel 
with rough boundaries. A relevant example is realized in a typical laterally restricted electron 
channel such as fabricated in the GaAs/AlGaAs heterostructure by introducing a confining 
potential in a two-dimensional electron gas [7,81. 

The DC conductivity of a metal film with diffuse boundaries was calculated for the first 
time by Fuchs [IO]. He introduced a phenomenological model of the specularity parameter. 
The same problem, based on a model of a statistically rough surface, was considered in [ I  11. 
This model assumes that inhomogeneities are distributed randomly and continuously along 
the surface (see, e.g., [12]). Statistical properties of roughnesses are characterized by two 
parameters: the root-mean-square height and the mean length of the roughnesses. The 
quantum mechanical approach to the resistivity of a thin film with a rough surface was 
developed in [13-15]. 

In quantum wires the boundary scattering is usually specular. but a small probability of 
non-specular reflection gives rise to some anomalous phenomena. In particular, in quasi-one- 
dimensional wires, boundary scattering leads to weak localization of electronic states [16- 
191 and to anomalies in low-field magnetoresistance [20-23]. Thus boundary scattering is 
essential for the transport properties of a narrow electron waveguide. The origin of boundary 
roughness is related to variations in the width of a channel and follows the fluctuations 
of the confinement potential [24]. Usually the amplitude of the boundary roughness is 
small compared to the width of a channel. This allows one to consider a channel with 
a constant width and the boundary inhomogeneities manifest themselves through random 
surface scattering of electrons. 

As shown in [25-271 surprisingly many effects in narrow electronic waveguides can 
be understood with a purely classical billiard ball model [28] if the number of transverse 
channels exceeds three. In what follows we will discuss the conditions for purely classical 
description of mesoscopic fluctuations. We note that classical aspects of boundary scattering 
are physically appropriate if the typical scale of the boundary roughnesses exceeds the 
de Broglie wavelength. 

The classical billiard ball model [2S] deals with an electronic trajectory which for a 
given channel is a broken line. It is obvious that, for a random boundary, such a trajectory 
has a random character. Each trajectory gives a certain contribution to the conductance 
of a channel. This contribution depends upon the coordinates of the last collision with 
the boundary. By averaging over these coordinates the conductance is averaged over a 
random distribution of roughnesses. This averaged conductance is the value which has 
been previously calculated [IO, 11,13,14]. 

This conductance depends upon the statistical parameters of the random boundary (for 
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example, in Fuchs' model [IO] it is the specularily parameter and in the model of a rough 
boundary [I I ]  these are the RMS height and the length o f  the roughnesses): Macroscopically 
identical samples have the same averaged conductance. But macroscopically identical 
samples possess different microscopical arrangements of scatterers and thus different sets 
of trajectories. This difference of the microscopic properties should manifest itself in 
the small irregular corrections to the averaged conductance. In the macroscopic limit 
these corrections vanish, but for the small-size samples they are essential to the classical 
mesoscopic fluctuations of the conductance [3,4]. 

In order to observe these fluctuations it is not necessary to consider an ensemble of 
macroscopically identical samples. It is experimentally more convenient to deal with 
the same sample (i.e. with the same arrangement of scatterers) but change the electron 
trajectories by applying a weak external magnetic field. 

In a weak external magnetic field the points at which an electron collides with the 
rough boundary are shifted, i.e. the distribution of scatterers along the electron trajectory is 
changed. So for a given value of magnetic field one has a special arrangement of scatterers 
in the sample. When the magnetic field varies continuously, small-amplitude stochastic 
oscillations of the conductance arise. The pattern of these oscillations is determined by the 
specific arrangement of the irregularities along the boundary of the channel, and is thus an 
individual characteristic of the sample (a 'magnetofingerprint'). 

The purpose of this paper is to estimate a 'typical amplitude and period of classical 
mesoscopic fluctuations induced by scattering of the conduction electrons at the rough 
boundary of a narrow electron channel. In section 2 we solve the kinetic equation and 
obtain the formula for the conductance which is a series representation of the'number of 
electron collisions with rough boundaries. In section 3 we discuss the influence of a weak 
transverse magnetic field and calculate the amplitude and period of the oscillations. Here 
we also demonstrate that stochastic oscillations of conductance have a fractal structure if 
bulk scatterers are absent. The case of almost specular reflection of electrons from the rough 
boundaries is discussed in section 4. Comparison of classical fluctuations with universal 
quantum fluctuations as well as recent experiments with our results are given in section 5. 

2. Mesoscopic corrections to conductance 

Consider a 2D electron channel of mean width a (figure I). The sizes of the boundary 
irregularities (RMS height and mean length) are assumed to be small compared to a. 
Boundary roughness leads to random scattering of conduction electrons. We now consider 
how a current is affected by this roughness. 

The current density, jx, in this channel can be written in the following form: 

Here e is the charge of an electron, x(afo/as) is the non-equilibrium addition to the Fermi 
distribution function, fa(&). and y is the inner normal to the averaged boundaries of the 
sample (figure 1). 

The non-equilibrium distribution function x is the solution of the Boltzmann equation 
taking account of the bulk scattering in the 7 approximation: 

x ax ax - + U, - + U - = e E  . v = eEu,. 
r ax y a y  



9138 V I  Kozub and A A Krokhin 

- 
X, X I  X channel with diffuse boundheS. 

Figure 1. Trajectory of an elecvon in a ZD electron 

This equation can be solved by the method of characteristics. Let the angles of the electron 
impact with the surface be 8.81, &, . . ., 8,. and the coordinates of the impact points be 
XI, Xz, . . . , X. (figure 1). Between the points with coordinates X. and X,+I an electron 
moves with constant velocity U, = v~cosBn, uy = u~sin8., where UF is the Fermi velocity. 
Making use of this notation one can write the solution of (2) as 

XI -x 2  +.  . . + -)I. x. - x' +- cos BI cos e, (3) 

Here 1 = is the mean free path. 
For the case where there is a strong size effect, i.e. 

I > > a  (4) 

then the mesoscopic fluctuations manifest themselves most profoundly. It is obvious that 
the main contribution to the sum over n in (3) is due to terms with n < N.  where 

In these terms we can neglect the difference of the exponent from unity and then rewrite 
the sum in the following way: 

dx'+ l:' dx'+. . . + L::, dx' = ycot0 fa(cot8, + 1.. +cote,). (6) 

The local reflection law at the point x = X, of the rough surface gives the relation between 
the angles and 0,. In the general case 

&+I = *b(&+ x2n+1) 8 2  ='&(&-I, x,) (7) 

where the functions qb and determine the reflection laws from the bottom and upper 
channel boundaries, respectively. The dependence of Wb and qu on impact angle is 
considered to be regular (e.g. in accordance with law of optics) but not spatially regular. The 
characteristic scale of the change of Wb and coincides with a mean length of roughness 
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L. Thus (3), (6)  and (7) completely determine the non-equilibrium dishibution function, x. 
Making use of (l), (3) and (6) we can now obtain the current density at the point (x. y): 

+ c o t [ * , ( ~ b ( 0 , x l ) , X z ) l f " '  f (*b * *d. (8) 

The first term in the large round brackets describes the averaged conductivity of a 
sample with a diffuse boundary; it accounts for the section of electron trajectory ycot0 
after the last collision with the rough boundary. Integration of this term over 0 gives the 
singular logarithmic factor In(upr/a), in agreement with Fuchs' result [IO]. The second 
term describes the fluctuations in the electron flow connected with electron scattering at the 
point x = XI .  It depends only on the coordinate XI ,  and obviously it does not contain 
any information about the correlation between successive scattering events of the electron 
at the boundary. Such information is contained in the third term which depends on two 
coordinates, XI and Xz. In what follows we will show that it is this term that gives the 
main contribution to mesoscopic fluctuations in an external magnetic field. The correlation 
terms of higher order, depending on three and more coordinates, also gives a contribution 
to the stochastic oscillations, but the amplitude of these oscillations tums out to be rather 
small. In calculating the integral in (8) the coordinates X I  and XZ should be considered as 
functions of x and y: 

1 

XI = x - y cot0 Xz = x - ycot0 - acot[W&?,x - ycot0)l. (9) 

Substituting (9) into ( 8 )  one can see that the third (correlation) term is a random function of 
the composite argument, which in turn contains a random function. The correlation scale of 
this composite function, with respect to the variable x, is L2/a, which is many times less 
than L because a j L  >> 1. This property is a consequence of the general principle of the 
initial condition memory loss due to random scattering. The higher-order terms omitted in 
(8) correspond to trajectories with multiple surface scattering and have a correlation scale 
(ajL)" times less than L (n is the number of collisions). Due to integration over momentum 
in (8) these terms give a relatively small conmbution to the mesoscopic fluctuations of 
conductance because of rapid oscillations of random functions in the integrand However, 
these terms are important for the fractal structure of mesoscopic oscillations, as shown 
below. 

To estimate the integrals in (8) we take account of the fact that the integration of a 
random function leads to a random function, but to one with a larger correlation scale. 
Consider the random function p(x) with correlation scale XO, with an amplitude of the order 
of unity and with a zero mean value. It is obvious that 

where y(a .6 )  is a random function with an amplitude of the order of unity and a 
characteristic scale over (L and S of the order of S. 

Using (10) we perform the integration over 0 in (8) and obtain the current density: 
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Here uo = pze2m/2irh2r is the 2D conductivity of the electron gas. y~ and yz are random 
functions with a characteristic scale of oscillations over x and y of the order of a, PF is 
the Fermi momentum and m is the effective electron mass. The length of the roughnesses, 
L ,  is assumed to be much less than the channel width, a; therefore (11) is the asymptotic 
series for the current density with respect to the small parameter (L/a)' lz. 

The current density in ( I  I )  has a small contribution depending on the coordinates x and 
y. In general, this contribution does not satisfy the electrical neutrality condition divj = 0. 
This condition holds due to a presence of some fluctuating electric field E'. This field can 
be determined directly from the neutrality condition by substituting into ( I )  and (2) the 
total field E + E' instead of the averaged field The spatial scale of the fluctuations of the 
current (1 1 )  is given by the statistical properties of random functions y,, y2, and thus is of 
the order of a. However, it follows from the condition divj = 0 that the field E' should 
have the same spatial scale of fluctuations. Small-scale fluctuations of the electric field arise 
only in the narrow 'rough' layer near the channel boundaries. The width of this layer is 
of the order of the mean height of the roughness, (. Since we are considering a channel 
of constant width Q (i.e. < a) we can neglect the contribution of this 'rough' layer to 
h e  conductance of the channel. Thus the electrical neutrality condition does not affect the 
statistical characteristics of conductance oscillations and we can readily neglect it. 

The average current density can be obtained from ( I  1) after integration over the volume 
of the sample. Assuming that the length of the channel b is much larger then the width a 
(b  >> a) and using (IO) we obtain the following fluctuating corrections to the conductance 
of a channel: 

V I  Kozub and A A Krokhin 

Here CI, C2, . . . are coefficients of the order of unity, depending on the realization of the 
rough boundary. 

e2 a2 
G = -- In(I/a) 

h b l  
is the conductance of the ZD electron channel with diffuse boundaries, and A = 27rh/pp is 
the de Broglie wavelength of the et&". 

Note that though the first term in (12) dominates it  can be observed experimentally only 
with a variation of the sample size (for example, variation of its width a or the shape of 
the whole rough boundary). For the 2D electron gas such a variation can be realized by a 
variation of the gate voltage. Local variations of the boundary of a distance of the order of 
the roughness of length L lead to the following variation of conduciance: 

G a 

which corresponds to the second term in ( I  1). 

3. Mesoscopic oscillations of conductance in a weak magnetic field 

Let us consider now the influence of a weak magnetic field, H ,  applied perpendicular to 
the plane n. y. The essential influence of a magnetic field on the averaged conductivity (the 
first term in (8)) appears if 

(Ra)In c I (14) 



Mesoscopic fluctuations in sysfem with scattering 9141 

where R is the Larmor radius. Condition (14) means that the magnetic field is rather strong: 
a typical electron trajectory does not touch one of the channel's boundaries. However, a 
much weaker magnetic field can influence the fluctuating terms in (8). In a weak magnetic 
field we can consider the electron trajectories to be straight lines, as before. But due to the 
magnetic field, weak bending small corrections are given as 

which appear for the coordinates XI. X 2 ,  . . . , X , .  The correction AX1 in (8) appears only 
in combination with x ,  and one can consider it as a displacement of the observation point. 
After averaging over the volume of a sample the effect associated with the variation of X I  
vanishes. This means that the first correction in (8) does not depend on a weak magnetic 
field On the other hand, the presence of the correction AX2 changes the correlation 
between successive impact points so if AX2 2 L one has the same effect as in the case 
of the complete variation of the rough surface. One can conclude that in a magnetic field 
obtained from the condition 

A X 2 2  L 

the conductance fluctuates with the amplitude given by (13). Condition (16) holds in a 
magnetic field H 2 Hcl, where H,I is the magnetic field strength corresponding to the 
displacement AX2 = L .  Making use of (15) we get the characteristic period of oscillations: 

where 00 = 2nfic/e is the fundamental magnetic flux. Note that (17) does not contain 
Planck's constant and is a solely a classical effect. 

Equation (17) gives the fundamental period of stochastic oscillations of conductance in 
a weak magnetic field. The background of these oscillations contain a fine structure with 
a period a / L  times less than those of (17). whose amplitude is (a/L)'I2 times less than 
(13). The fine structure is described by the first omitted term in (8). It depends on three 
coordinates: X I ,  X z  and X3. The next term depending on X I ,  X 2 ,  X3 and X q  gives the 
superfine structure with period and amplitude decreasing according to the same law, and so 
on. If we take account of the infinite number of terms, i.e. the infinite number of electron 
collisions with the boundaries, then we come to conclusion that A G ( H )  has a self-similar 
structure. Such a curve is a stochastic fractal (see, e.g., I291). It is easy to obtain that the 
fractal dimension of the curve AG(H) is 1.5. 

However, we would like to note that so far as the number of collisions (5) is limited 
by the finite bulk free path the smallest period and amplitude of the oscillations are of the 
order of HcI(L/a)N and (a /b) ' /2(L/a)NIZ.  So for the real samples at the smaller scale the 
curve AG(H)  has no scaling behaviour. 

Stochastic oscillations of the conductance, with amplitudes given by (13) and periods 
by (17). are classical manifestation of microscopic properties of a mesoscopic sample and 
they can be considered as a classical magnetofingerprint. They appear when the magnetic 
field H exceeds He] .  It is interesting to compare the value of the period of the classical 
oscillations, He,, wilh the value of the magnetic field 
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calculated from (14). The ratio 
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is a product of a small parameter (L/u)’ and a big parameter (1/u)’. This ratio is small if 

(L/a)’ << ( a / V .  (20) 

The laSt inequality is true, since the parameter L is microscopic while I and a are 
macroscopic quantities. However, even if it does not hold then classical mesoscopic 
oscillations with the same amplitude and period should appear in the background of the 
smooth dependence of G(H). 

4. Almost specular reflection 

We now consider the mesoscopic fluctuations in the channel with almost specular boundaries. 
In such a case the functions 0” and Vb have a large deterministic (specular) part and a small 
random contribution: 

we, x) = e + a(e, x) 01 <<e. (21) 

A typical value of the random function 01 coincides with the angular width of the scattering 
indicatrix. The scattering indicauix as a function of height and length of roughness has been 
obtained in [12,30]. In the almost-specular approximation one can expand the cotangents 
in (8) in terms of the small random function a. After this the sum of all the deterministic 
terms should be changed by the free path 1. This sum forms the conductivity of the channel 
to a zero approximation and for specular reflection the conductivity coincides with UO. 

The correction terms arising after expansion of the cotangents should be averaged with 
the help of (IO). However, we should consider the fact that the typical amplitude of the 
random function (i.e. 01)  is  not unity. As a result, we get (12) for the fluctuating part of 
the conductance (to within a logarithmic factor). Now the values of constants CI,  Cz, . . ., 
which coincide with the angular width of scattering indicatrix are not of order unity. The 
angular width of the scattering indicatrix for the near specular reflection is much less than 
that for the diffuse reflection. This causes the amplitude of stochastic oscillations (which is 
proportional to C,, CZ, . . .) to decrease in the channels with almost specular boundaries. 

The classical motion of the electron along the trajectory considered in this paper 
corresponds to the Kirchhoff approximation in the theory of wave scattering from a rough 
surface [ 121. In this approximation the electron wavepacket is reflected almost specularly 
from the random surface if r << 1 and diffusely if r 2 1 [30]. Here r = f / L  is 
the mean slope of the roughness. In the Kirchhoff approximation the angular width of the 
scattering indicatrix coincides with r 1301. Thus the amplitude of the stochastic mesoscopic 
fluctuations of conductance decreases in proportion to the parameter $ / L .  For a sample with 
a perfect boundary ( f / L  = 0) oscillations vanish, and for a diffuse boundary ($ /L  2 1) 
oscillations have the maximum amplitude given by (13). 
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5. Classical and quantum fluctuations of conductance 

Before comparing the present results with those expected from quantum effects we note 
that a deterministic classical trajectory only holds if the diffraction effects can be neglected. 
Estimates of the diffraction divergence of the electronic beam scattered by a roughness 
element provides the condition for the correlation between successive scattering events to 
be of a purely classical nature: 

Note that the presence of boundary roughness with a scale larger than the de Broglie 
wavelength seems to be typical for 2D channels [31]. Accordingly, we can write the final 
chain of inequalities which are necessary for the classical consideration to be applicable in 
the ballistic regime: 

A < c L << a << i. (23) 

Universal quantum fluctuations of conductance [1,2] in disordered samples are size 
independent and have an amplitude of order e z / h .  Using (13) one obtains the ratio of 
the amplitudes of the conductance fluctuations in the quantum limit to that in the classical 
limit as 

-=-()  L a 3'2 . 
( e z / h )  A h 
AG 

This formula shows that in a realistic situation (bla - 10) classical mesoscopic effects 
can be at least as large as quantum effects and even will dominate if L / h  2 30. On the 
other hand, classical effects can be present at higher temperatures where inelastic scattering 
destroys phase coherency and quantum effects are of no importance. 

Universal quantum fluctuations have been observed in the magnetoresistance of 
disordered metals (for a review see, e.g., 1321) for the diffuse regime of electron motion in 
the bulk. At low temperatures they are independent of both the degree of disorder and the 
sample geometry. However, very recently sizedependent oscillations have been observed 
in GaAs/AlGaAs heterostructures 1331. The regime of electron motion was ballistic rather 
than diffuse (i 2 a). The amplitude of the conductance fluctuations in a weak magnetic 
field exhibited the essential dependence on the gate voltage, i.e. on the width of the sample. 
For rather narrow channels corresponding to the ballistic regime (a = 0.05-0.25 pm) this 
dependence was very near to a3P. The same dependence is given by our formula (24). 
Note that the quantum calculations make no such prediction. 

We would like to note that quantum conductance fluctuations in the ballistic regime in 
quantum wires were calculated numerically [34]. It was shown that sizequantization leads 
to a non-universal character of the fluctuations: they exhibit a dependence upon the length 
of the channel. Unfortunately these numerical results [34] are not enough to provide a 
comparison of the amplitude of quantum and classical fluctuations as well as to determine 
the dependence of the amplitude of quantum fluctuations on the channel width. 

In summary, the present theory provides a description of classical conductance 
fluctuations induced by the random scattering of conduction electrons at the boundaries of 
a 2D electron channel. Unlike the universal quantum fluctuations the classical fluctuations 
are size dependent and persist to rather high temperatures. 
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